Instrumentation, Analytical Techniques and Sampling

ENHL 232

Lecture 1

Introduction

Objectives of the session:

- Provide an overview about
- The basic units of metric system
- Concentration units
- Dilution calculations
- Interpretation of data
- Statistical Calculations

The Importance of Units

- Numbers are meaningless without units
- The basic units of metric system:
- Length in meter
- Mass in kilogram
- Volume in liter

Concentration Units

- Molarity (M)

- The number of moles of a certain species contained in one liter of the solution
.

Concentration Units

- Normality (N)
- Normality is the number of equivalents of solute per liter of a solution
- $\mathrm{N}=$ equivalent of solute/v of solution (I)
- Normality of a solution depends on the reaction taking place
- For normality to be calculated the stoichiometric equation must be known

Concentration Units

- where X may be
- acidity of a base
- basicity of an acid
- number of electrons gained or lost by a redox reagent

Types of reactions

- Acid-base neutralization
- Oxidation-reduction reactions
- Precipitate formation
- Complex formation

pFunction or the negative logarithm function

- Mostly, the function is the concentration of the studied species
- The symbol of the studied species in terms of its concentration is enclosed in brackets

Percent

- Weight percent

- weight percent $=($ weight solute/weight solution $) \times 100$ with same weight units such as gram-gram, mg-mg, $\mathrm{Kg}-\mathrm{Kg}$
- For solid such as ores or tissue samples:
- Weight percent $=($ grams substance determined/ grams total sample) \times 100

Percent

- Volume percent
- Used if both the solute and the solvent are liquids
- Volume percent $=($ volume solute/volume solution $) \times 100$ with same volume units such as ml -ml or liter-liter
- Weight-volume percent
- Used in the preparation of approximate concentrations of solutions:
- Weight-volume percent $=(\mathrm{g}$ solute $/ \mathrm{ml}$ solution) $\times 100$

Parts per thousand, parts per million, and parts per billion

- $1 \mathrm{ppm}=\underset{\text { water }}{1 \mathrm{~g} \text { of analyte per million grams of }}$
- $1 \mathrm{ppb}=1 \mathrm{~g}$ of analyte per billion grams of water

Parts per unit methods of expressing concentrations and equivalent expressions

Dilution Calculations

- It is often necessary for experimental needs to dilute our sample so as to have a lower concentration
- The dilution process Involves adding water to a known concentration and volume of the sample that is a higher concentration value
- Number of moles in diluted sample $=\mathrm{n}$ sample

Interpretation of Data
 - Precision and accuracy
 Precision: the variability among replicate measurements, i.e., how close the values in a series of results are to each other
 Accuracy: the difference between the obtained value and the true value

SUPPOSE YOU MEASURED THE MASS OF AROCK TO BE 8.2 GRAMS AND THE VOLUME TO BE 2.3 CM3.
HOW ACCURATELY CAN YOU DETERMINE ITS DENSITY?

Density $=$ Mass $/$ Volume $=8.2 \mathrm{gm} / 2.3 \mathrm{~cm}^{3}=3.57 \mathrm{gm} / \mathrm{cm}^{3}$
No fictional digits well, maybe the 7 is
Density $=3.6 \mathrm{gm} / \mathrm{cm}^{3}$ stretching it. It is reasonable to carry an extra digit or two in intermediate calculations

Interpretation of Data

- There are three rules on determining how many significant figures are in a number:

- Any zeros between two significant d significant.

Number	Significant Digits
28.09	4
1008.91	6
3.005	4
2.03	3

Interpretation of Data

- 26.38 would have four significant figures and 7.94 would have three
- $0.005\left(5.00 \times 10^{-3}\right)$
$\cdot 0.0304\left(3.040 \times 10^{-2}\right)$

Interpretation of Data

- Absolute and relative uncertainty

- The uncertainty of a value may be expressed in absolute or relative terms

Interpretation of Data

- Significant figures in numerical computations
- A chain is only as strong as its weakest link
- For addition and subtraction, the weak link is the number of decimal places in the number with the smallest number of decimal places

Interpretation of Data

- The weak link for multiplication and division is the number of significant figures in the number with the smallest number of significant figures

Interpretation of Data

- Example:

$8.9 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{mol}=0.74 \mathrm{~mol}$
8.9444 g
+18.52 g
27.46 g

Interpretation of Data

- Rounding data

- Always round the computed results of a chemical analysis in an appropriate way
- A good guide to follow when rounding a 5 is always to round to the nearest even number 6

- Two common calibration procedures:

Working curve:
Standard addition

Workina Curve

Standard Addition

- An analyst usually divides the unknown sample into two portions, so that a known amount of the analyte (a spike) can be added to one portion
- The original and the original plus spike, are then analyzed
- The sample with the spike will show a larger analytical response than the original sample due to the additional amount of analyte added to it

Internal Standard Method

- Instead of using the analyte itself as the calibrant, another substance is used
- It is possible to determine the analyte concentration from a single measurement
- Any losses of analyte will be reflected in similar losses of internal standard

Introduction to Statistics

- The average is synonymous with the arithmetic mean
- Obtained by adding the results of a number of replications and dividing this sum by the number of replications

$$
\bar{x}=\frac{\sum_{i=1}^{N} x_{i}}{N}
$$

Introduction to Statistics

- The average is an important component of reported results but on itself is insufficient
-HOWEVER the extent of the variations within any set of values should also be considered
- From the deviations an average deviation, may be calculated
- The average deviation is the arithmetic mean of the absolute values of the individual deviations

Introduction to Statistics

- Another mean of expressing precision is with standard deviations
- This is defined as the square root of the sum of the squares of the absolute deviations of the individual samples divided by one less than the number of samples

$$
S=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1}}
$$

```
Standard Deviation and Variance
Deviation just means how far from the normal
Standard Deviation
The Standard Deviation is a measure of how spread out numbers are,
Its symbol is \(\sigma\) (the greek letter sigma)
The formula is easy: it is the square root of the Variance. So now you ask, "What is the Variance?"
Variance
The Variance is defined as:
The average of the squared differences from the Mean.
To calculate the variance follow these steps:
Work out the Mean (the simple average of the numbers)Then for each number: subtract the Mean and square the result (the squared difference). Then work out the average of those squared differences. (Why Square?)
Example
You and your friends have just measured the heights of your dogs (in millimeters):
The heights (at the shoulders) are: \(600 \mathrm{~mm}, 470 \mathrm{~mm}, 170 \mathrm{~mm}, 430 \mathrm{~mm}\) and 300 mm .
Find out the Mean, the Variance, and the Standard Deviation.
Your first step is to find the Mean:
Answer:
Mean \(=600+470+170+430+300=1970=3945\)
so the mean (average) height is 394 mm . Let's plot this on the chart: Now, we calculate each dogs difference from the Mean:
To calculate the Variance, take each difference, square it, and then average the result:
So, the Variance is \(21,704\).
And the Standard Deviation is just the square root of Variance, so:
Standard Deviation: \(\sigma=\sqrt{ } 21,704=147.32 \ldots=147\) (to the nearest mm )
And the good thing about the Standard Deviation is that it is useful. Now we can show which heights are within one Standard Deviation (147mm) of the Mean:
So, using the Standard Deviation we have a "standard" way of knowing what is normal, and what is extra large or extra small.
Rottweilers are tall dogs. And Dachshunds are a bit short ... but don't tell them!
Now try the Standard Deviation Calculator
```


But ... there is a small change with Sample Data

Our example was for a Population (the 5 dogs were the only dogs we were interested in).

- But if the data is a Sample (a selection taken from a bigger Population), then the calculation changes!
- When you have " N " data values that are:
- The Population: divide by N when calculating Variance (like we did)
- A Sample: divide by N-1 when calculating Variance
- All other calculations stay the same, including how we calculated the mean.
- Example: if our 5 dogs were just a sample of a bigger population of dogs, we would divide by 4 instead of 5 like this:
- Sample Variance $=108,520 / 4=27,130$
- Sample Standard Deviation $=\sqrt{ } 27,130=164$ (to the nearest mm)
- Think of it as a "correction" when your data is only a sample.
- Formulas
- Here are the two formulas, explained at Standard Deviation Formulas if you want to know more:

The "Population Standard Deviation":

- The "Sample Standard Deviation": Looks complicated, but the important change is to divide by $\mathrm{N}-1$ (instead of N) when calculating a Sample Variance.
- *Footnote: Why square the differences?
- If we just added up the differences from the mean ... the negatives would cancel the positives:
- $4+4-4-4=04$ So that won't work. How about we use absolute values?
- $|4|+|4|+|-4|+|-4|=4+4+4+4=444$ That looks good, but what about this case:
- $|7|+|1|+|-6|+|-2|=7+1+6+2=444$ Oh No! It also gives a value of 4 , Even though the differences are more spread out!
- So let us try squaring each difference (and taking the square root at the end):
- $\sqrt{ } 4^{2}+4^{2}+4^{2}+4^{2}=\sqrt{ } 64=444 \sqrt{ } 7^{2}+1^{2}+6^{2}+2^{2}=\sqrt{ } 90=4.74 \ldots 44$ That is nice! The Standard Deviation is bigger when the differences are more spread out ... just what we want!
- In fact this method is a similar idea to distance between points, just applied in a different way.
- And it is easier to use algebra on squares and square roots than absolute values, which makes the standard deviation easy to use in other areas of mathematics.

\qquad
\qquad

[^0]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad號

-
\square
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]: (20 ene

